Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
Carlo Fischer; Tongai Gibson Maponga; Anges Yadouleton; Nuro Abilio; Emmanuel Aboce; Praise Adewumi; Pedro Afonso; Jewelna Akorli; Soa Fy Andriamandimby; Latifa Anga; Yvonne Ashong; Mohamed Amine Beloufa; Aicha Bensalem; Richard Birtles; Anicet Luc Magloire Boumba; Freddie Bwanga; Mike Chaponda; Paradzai Chibukira; R Matthew Chico; Justin Chileshe; Wonderful Choga; Gershom Chongwe; Assana Cisse; Fatoumata Cisse; Umberto D Alessandro; Xavier de Lamballerie; Joana F.M. de Morais; Fawzi Derrar; Ndongo Dia; Youssouf Diarra; Lassina Doumbia; Christian Drosten; Philippe Dussart; Richard Echodu; Tom Luedde; Abdelmajid Eloualid; Ousmane Faye; Torsten Feldt; Anna Fruehauf; Simani Gaseitsiwe; Afiwa Halatoko; Pauliana-Vanessa Ilouga; Nalia Ismael; Ronan Jambou; Sheikh Jarju; Antje Kamprad; Ben Katowa; John Kayiwa; Leonard Kingwara; Ousmane Koita; Vincent Lacoste; Adamou Lagare; Olfert Landt; Sonia Etenna Lekana-Douki; Jean-Bernard Lekana-Douki; Etuhole Iipumbu; Hugues Loemba; Julius Lutwama; Santou Mamadou; Issaka Maman; Brendon Manyisa; Pedro A. Martinez; Japhet Matoba; Lusia Mhuulu; Andres Moreira-Soto; Sikhulile Moyo; Judy Mwangi; Nadine Ndilimabaka; Charity Angella Nassuna; Mamadou Ousmane Ndiath; Emmanuel Nepolo; Richard Njouom; Jalal Nourlil; Steven Ger Nyanjom; Eddy Okoth Odari; Alfred Okeng; Jean Bienvenue Ouoba; Michael Owusu; Irene Owusu Donkor; Karabo Kristen Phadu; Richard Odame Phillips; Wolfgang Preiser; Pierre Roques; Vurayai Ruhanya; Fortune Salah; Sourakatou Salifou; Amadou Alpha Sall; Augustina Angelina Sylverken; Paul Alain Tagnouokam-Ngoupo; Zekiba Tarnagda; Francis Olivier Tchikaya; Noel Tordo; Tafese Beyene Tufa; Jan Felix Drexler.
medrxiv; 2024.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2024.02.27.24303356

Résumé

Background: In mid-November 2021, the SARS-CoV-2 Omicron BA.1 variant was detected in Southern Africa, prompting international travel restrictions of unclear effectiveness that exacted a substantial economic toll. Methods: Amidst the BA.1 wave, we tested 13,294 COVID-19 patients in 24 African countries between mid-2021 to early 2022 for BA.1 and Delta variants using real-time reverse transcription-PCR tests. The diagnostic precision of the assays was evaluated by high-throughput sequencing in four countries. The observed BA.1 spread was compared to mobility-based mathematical simulations. Findings: By November-December 2021, BA.1 had replaced the Delta variant in all African sub-regions following a South-North gradient, with a median Rt of 2.4 up to 30 days before BA.1 became predominant. PCR-based South-North spread was in agreement with phylogeographic reconstructions relying on 939 SARS-CoV-2 genomes from GISAID. PCR-based reconstructions of country-level BA.1 predominance correlated significantly in time with the emergence of BA.1 genomic sequences on GISAID (p=0.0035, cor=0.70). First BA.1 detections in affluent settings beyond Africa were predicted adequately in time by mobility-based mathematical simulations (p<0.0001). BA.1-infected inbound travelers departing from five continents were identified in five Western countries and one Northern African country by late November/early December 2021, highlighting fast global BA.1 spread aided by international travel. Interpretation: Unilateral travel bans were poorly effective because by the time they came into effect, BA.1 was already widespread in Africa and beyond. PCR-based variant typing combined with mobility-based mathematical modelling can inform rapidly and cost-efficiently on Rt, spread to inform non-pharmaceutical interventions.


Sujets)
COVID-19
2.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.05.01.22274406

Résumé

South Africa's fourth COVID-19 wave was driven predominantly by three lineages (BA.1, BA.2 and BA.3) of the SARS-CoV-2 Omicron variant of concern. We have now identified two new lineages, BA.4 and BA.5. The spike proteins of BA.4 and BA.5 are identical, and comparable to BA.2 except for the addition of 69-70del, L452R, F486V and the wild type amino acid at Q493. The 69-70 deletion in spike allows these lineages to be identified by the proxy marker of S-gene target failure with the TaqPath COVID-19 qPCR assay. BA.4 and BA.5 have rapidly replaced BA.2, reaching more than 50% of sequenced cases in South Africa from the first week of April 2022 onwards. Using a multinomial logistic regression model, we estimate growth advantages for BA.4 and BA.5 of 0.08 (95% CI: 0.07 - 0.09) and 0.12 (95% CI: 0.09 - 0.15) per day respectively over BA.2 in South Africa.


Sujets)
COVID-19
3.
authorea preprints; 2022.
Preprint Dans Anglais | PREPRINT-AUTHOREA PREPRINTS | ID: ppzbmed-10.22541.au.165090985.54769587.v1

Résumé

We sought to investigate whether SARS-CoV-2 was present, and to perform full-length genomic sequencing, in a 5-year-old male crossbreed dog that presented with flu-like symptoms (including a dry hacking cough and mild dyspnea) and resided in a household with 3 adults that were diagnosed with SARS CoV-2 infection. Next generation sequencing based on MinION technology was performed on amplicons that were generated using a reverse transcriptase real-time polymerase chain reaction (RT-qPCR) of confirmed positive SARS-CoV-2 nasopharyngeal and buccal swabs, as well as a bronchoalveolar lavage with mean qCt value of 36 based on the Nucleocapsid gene. Descriptive comparisons to known sequences in Botswana and internationally were made using mutation profiling analysis and phylogenetic inferences based on maximum likelihood. Samples from the dog’s owners were not available. A near-full length SARS-CoV-2 genome (~90% coverage) was successfully genotyped and classified under clade 20 O and Pango-Lineage AY.43 (Pango v.4.0.6 PLEARN-v1.3; 2022-04-21), which is a sub-lineage of the Delta variant of concern (VOC) (formerly called B.1.617.2, first detected in India). We did not identify novel mutations that may be used to distinguish SARS-CoV-2 isolates from the dog and humans. In addition to S region mutation profiling, we performed phylogenetic analysis using Delta sequences from Botswana (n=1303); expectedly, the sequence isolated from the dog was closely related to the Delta sequences, particularly the AY.43, AY.116, and B.1.617.2 sub-lineages that were reported in Botswana within the same time frame. This is the first documented report of human-associated SARS-CoV-2 infection in a dog in Botswana. Although the direction of transmission remains unknown, this study further affirms the need for monitoring pets during different COVID-19 waves for possible clinically relevant SARS-CoV-2 transmissions between species.


Sujets)
COVID-19 , Dyspnée
SÉLECTION CITATIONS
Détails de la recherche